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Abstract

We describe a procedure for emulating any discreet uniform probability
distribution using another. For example, using two six-sided dice in order
to emulate the twenty-sided die found in Dungeons and Dragons. We also
perform a cost analysis of this procedure, as well as note two special cases
when constant runtime is achieved.

1 Introduction

Dungeons and Dragons, an infamous tabletop role-playing game, uses a variety
of unusual dice in order to determine outcomes of the game. The most iconic
of these dice is the twenty-sided die. In DnD, a roll of the twenty-sided die
may vastly determine the outcome of the game; for example, when a character
performs an attack, the 20-sided die is used to determine how much damage is
incurred to the victim.

Wizards of the Coast calls this style of gameplay the “d20 system” [1]. Since
its first introduction, this notation has caught on and gained some notoriety,
especially in the larger geek community.

Unfortunately, this style of gameplay requires the use of a twenty-sided dice.
In many areas, such dice may be difficult or inconvenient to obtain. As such,
we aim to answer the question, “How may one emulate a twenty-sided die using
only a set of six-sided dice?”

Definition 1 For any nonzero, positive integer n, dn is the uniform, discreet
probability distribution whose possible outcomes range from 0 to n−1, inclusive.

Informally, we may say dn is the distribution representing a fair, n-sided die
with sides labeled 0, 1, . . . , n− 1. For example, d2 may represent to a coin flip,
d6 may represent a commonplace six-sided die, and d20 represents our coveted
20-sided die.

Using this notation, we can formalize our goal as a procedure which uses a
distribution dn in order to simulate a distribution dm.
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2 Combinatoric Intuition

2.1 Using decision trees

The general idea behind emulating dm distribution will require that we use the
dn distribution to produce k ≥ m unique possibilities to choose from. Of these
k possibilities, we will assign exactly k −m of these options a probability of 0,
and the remaining m possibilities will all have a probability of exactly 1/m.

In order to use the dn distribution to produce k possibilities, we will sample
the dn distribution multiple times, using a decision tree to decide which of the
k possibilities to choose from. The simplest way to do this is to keep track of
ordered rolls. If we roll x times, then we will have nx different possibilities for
ordered outcomes. Let us choose x such that,

k = nx ≥ m.

Clearly, the minimal integer x for which this inequality holds is

x = dlogn me.

Of course, our decision tree currently has k possibilities, each with a probability
of 1/k. We will solve this by rereolling whenever we choose one of the rightmost
k −m branches. In this way, these rightmost branches will have a probability
of exactly 0 (since they will never be chosen), and the leftover probability will
be equally distributed among the other m branches.

It is important that whenever we reach a branch with P = 0, we must restart
at the very top of the decision tree. Otherwise, we will have a situation very
similar to the Monty Hall Problem, resulting in a nonuniform distribution.

Example 1 Create a decision tree for emulating a three-sided die using coin
flips.

In this example, we have m = 3 and n = 2. Using the equations above, x = 2
and k = 4. Thus, one possible decision tree for our procedure is

Begin

Heads

Heads

0

Tails

1

Tails

Heads

2

Tails

Reroll.

That is, to emulate a three-sided die, we flip a coin twice. If both our coins
are Heads, we will return 0. If we get a Heads, then a Tails, we will return 1. If
we get a Tails, and then a Heads, we will return 2. Finally, if both of our flips
are Tails, we must retry by flipping both coins again until we get something
other than Tails–Tails.
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2.2 Using base-n numbers

Next, we observe that it is unnecessary to actually completely construct a deci-
sion tree. Rather, it is possible to interpret each progressive roll as a digit in a
base-n number.

Recall that a base-n number, A, of length x, is equivalent to the following
base-10 formula:

A = a0 + na1 + . . . + nx−2ax−2 + nx−1ax−1, (1)

where ai is the ith digit of the A counting from the right. In this way, possible
values of A ranges from 0 to nx−1, inclusive. After some algebraic manipulation,
may rewrite (1) as

A = a0 + n(a1 + n(a2 + . . .)). (2)

Equation (2) is key to the notion of using base-n numbers in order to implic-
itly construct our decision tree. We will treat each successive dn roll as a digit in
a base-n number of length x, thus giving us k = nx different possible results. To
throw out the k−m rightmost branches, we will simply reroll whenever A ≥ m,
thus creating a uniform distribution over the numbers 0 to m− 1.

3 Formal Procedure

We are now ready to formalize our procedure. Note that in this pseudocode, we
use the notation dn() to represent taking a sample from the dn distribution; in
other words, dn() represents rolling an n-sided die.

Algorithm 1 Emulating a m-sided die using many n-sided rolls.
x← dlogn me
loop

A← 0
for i = 0 to x− 1 do

A← A ∗ n + dn()
end for
if A < m then

return A
end if

end loop

In theory, this algorithm may possibly run forever, though with an infinitely
small probability. In the next section, we aim to analyze how many times we
will need to roll on average.

4 Cost Analysis

In each iteration of the loop, we have m possible ways of stopping (success)
and k − m possible ways of needing to reiterate (failure). That is, we have a
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geometric distribution with a P = m/k probability of getting a success. The
mean of a geometric distribution is well-known [2] to be 1/P , and so the average
number of trials (loop iterations) before a success (termination) is

nx

m
,

where x = dlogn me. Therefore, the average number of samples taken from dn

(rolls of the n-sided die), will be

x
nx

m
.

Example 2 Emulating a six-sided die using coin flips will require 4 flips on
average.

Example 3 Emulating a 20-sided die using only a single die will require 3.6
rolls on average. Using a set of two colored dice, we will need 1.8 rolls on
average.

Example 4 Emulating a 100-sided die with two 10-sided die will never require
a reroll.

5 Perfect emulation

A modification to Algorithm 1 can allow for perfect emulation (that is, constant
runtime) whenever 0 ≡ nx mod m. In this case, instead of rerolling, we can
simply assign multiple branches of the decision tree the same value; because
nx is evenly divisible by m, we will have an equal number of branches for each
possible value 0 to m− 1.

Algorithm 2 Simulating dm using many dn samples when 0 ≡ nx mod m.
x← dlogn me
A← 0
for i = 0 to x− 1 do

A← A ∗ n + dn()
end for
return A mod m

Example 5 Simulating a 20-sided die with two 10-sided die. We roll the dice,
concatenating the values in order to produce a number between 00 and 99. We
return the mod 20 of this number.

There exist alternative encodings, as well. For example, consider m = 8 and
n = 4. Here, we may use the first dice roll to determine whether our answer
should be “high” or “low”, and the second roll to select a value from the sets
{0, 1, 2, 3} or {4, 5, 6, 7}. We leave the generalization of this case, and others, as
exercises for the reader.

4



6 Conclusion

We have shown a procedure for simulating any discreet, uniform distribution dm

using a fixed number of samples from another discreet, uniform dn distribution.
One real world example is emulating the popular 20-sided die found in Dungeons
and Dragons using only a six-sided die.

We also have shown a cost analysis for such a procedure, as well as pointed
out two special cases where perfect emulation is achieved.
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