Playing DnD with a Yahtzee Set

Stephen Roller
roller@cs.utexas.edu

March 7, 2011

DRAFT

Abstract

We describe a procedure for emulating any discreet uniform probability distribution using another. For example, using two six-sided dice in order to emulate the twenty-sided die found in Dungeons and Dragons. We also perform a cost analysis of this procedure, as well as note two special cases when constant runtime is achieved.

1 Introduction

Dungeons and Dragons, an infamous tabletop role-playing game, uses a variety of unusual dice in order to determine outcomes of the game. The most iconic of these dice is the twenty-sided die. In DnD , a roll of the twenty-sided die may vastly determine the outcome of the game; for example, when a character performs an attack, the 20 -sided die is used to determine how much damage is incurred to the victim.

Wizards of the Coast calls this style of gameplay the "d20 system" [1]. Since its first introduction, this notation has caught on and gained some notoriety, especially in the larger geek community.

Unfortunately, this style of gameplay requires the use of a twenty-sided dice. In many areas, such dice may be difficult or inconvenient to obtain. As such, we aim to answer the question, "How may one emulate a twenty-sided die using only a set of six-sided dice?"

Definition 1 For any nonzero, positive integer n, d_{n} is the uniform, discreet probability distribution whose possible outcomes range from 0 to $n-1$, inclusive.

Informally, we may say d_{n} is the distribution representing a fair, n-sided die with sides labeled $0,1, \ldots, n-1$. For example, d_{2} may represent to a coin flip, d_{6} may represent a commonplace six-sided die, and d_{20} represents our coveted 20-sided die.

Using this notation, we can formalize our goal as a procedure which uses a distribution d_{n} in order to simulate a distribution d_{m}.

2 Combinatoric Intuition

2.1 Using decision trees

The general idea behind emulating d_{m} distribution will require that we use the d_{n} distribution to produce $k \geq m$ unique possibilities to choose from. Of these k possibilities, we will assign exactly $k-m$ of these options a probability of 0 , and the remaining m possibilities will all have a probability of exactly $1 / m$.

In order to use the d_{n} distribution to produce k possibilities, we will sample the d_{n} distribution multiple times, using a decision tree to decide which of the k possibilities to choose from. The simplest way to do this is to keep track of ordered rolls. If we roll x times, then we will have n^{x} different possibilities for ordered outcomes. Let us choose x such that,

$$
k=n^{x} \geq m
$$

Clearly, the minimal integer x for which this inequality holds is

$$
x=\left\lceil\log _{n} m\right\rceil .
$$

Of course, our decision tree currently has k possibilities, each with a probability of $1 / k$. We will solve this by rereolling whenever we choose one of the rightmost $k-m$ branches. In this way, these rightmost branches will have a probability of exactly 0 (since they will never be chosen), and the leftover probability will be equally distributed among the other m branches.

It is important that whenever we reach a branch with $P=0$, we must restart at the very top of the decision tree. Otherwise, we will have a situation very similar to the Monty Hall Problem, resulting in a nonuniform distribution.
Example 1 Create a decision tree for emulating a three-sided die using coin flips.

In this example, we have $m=3$ and $n=2$. Using the equations above, $x=2$ and $k=4$. Thus, one possible decision tree for our procedure is

That is, to emulate a three-sided die, we flip a coin twice. If both our coins are Heads, we will return 0. If we get a Heads, then a Tails, we will return 1. If we get a Tails, and then a Heads, we will return 2. Finally, if both of our flips are Tails, we must retry by flipping both coins again until we get something other than Tails-Tails.

2.2 Using base- n numbers

Next, we observe that it is unnecessary to actually completely construct a decision tree. Rather, it is possible to interpret each progressive roll as a digit in a base- n number.

Recall that a base- n number, A, of length x, is equivalent to the following base-10 formula:

$$
\begin{equation*}
A=a_{0}+n a_{1}+\ldots+n^{x-2} a_{x-2}+n^{x-1} a_{x-1} \tag{1}
\end{equation*}
$$

where a_{i} is the i th digit of the A counting from the right. In this way, possible values of A ranges from 0 to $n^{x}-1$, inclusive. After some algebraic manipulation, may rewrite (1) as

$$
\begin{equation*}
A=a_{0}+n\left(a_{1}+n\left(a_{2}+\ldots\right)\right) \tag{2}
\end{equation*}
$$

Equation (2) is key to the notion of using base- n numbers in order to implicitly construct our decision tree. We will treat each successive d_{n} roll as a digit in a base- n number of length x, thus giving us $k=n^{x}$ different possible results. To throw out the $k-m$ rightmost branches, we will simply reroll whenever $A \geq m$, thus creating a uniform distribution over the numbers 0 to $m-1$.

3 Formal Procedure

We are now ready to formalize our procedure. Note that in this pseudocode, we use the notation $d_{n}()$ to represent taking a sample from the d_{n} distribution; in other words, $d_{n}()$ represents rolling an n-sided die.

```
Algorithm 1 Emulating a \(m\)-sided die using many \(n\)-sided rolls.
    \(x \leftarrow\left\lceil\log _{n} m\right\rceil\)
    loop
        \(A \leftarrow 0\)
        for \(i=0\) to \(x-1\) do
            \(A \leftarrow A * n+d_{n}()\)
        end for
        if \(A<m\) then
            return \(A\)
        end if
    end loop
```

In theory, this algorithm may possibly run forever, though with an infinitely small probability. In the next section, we aim to analyze how many times we will need to roll on average.

4 Cost Analysis

In each iteration of the loop, we have m possible ways of stopping (success) and $k-m$ possible ways of needing to reiterate (failure). That is, we have a
geometric distribution with a $P=m / k$ probability of getting a success. The mean of a geometric distribution is well-known [2] to be $1 / P$, and so the average number of trials (loop iterations) before a success (termination) is

$$
\frac{n^{x}}{m}
$$

where $x=\left\lceil\log _{n} m\right\rceil$. Therefore, the average number of samples taken from d_{n} (rolls of the n-sided die), will be

$$
x \frac{n^{x}}{m}
$$

Example 2 Emulating a six-sided die using coin flips will require 4 flips on average.

Example 3 Emulating a 20-sided die using only a single die will require 3.6 rolls on average. Using a set of two colored dice, we will need 1.8 rolls on average.

Example 4 Emulating a 100-sided die with two 10-sided die will never require a reroll.

5 Perfect emulation

A modification to Algorithm 1 can allow for perfect emulation (that is, constant runtime) whenever $0 \equiv n^{x} \bmod m$. In this case, instead of rerolling, we can simply assign multiple branches of the decision tree the same value; because n^{x} is evenly divisible by m, we will have an equal number of branches for each possible value 0 to $m-1$.

```
Algorithm 2 Simulating \(d_{m}\) using many \(d_{n}\) samples when \(0 \equiv n^{x} \bmod m\).
    \(x \leftarrow\left\lceil\log _{n} m\right\rceil\)
    \(A \leftarrow 0\)
    for \(i=0\) to \(x-1\) do
        \(A \leftarrow A * n+d_{n}()\)
    end for
    return \(A \bmod m\)
```

Example 5 Simulating a 20-sided die with two 10-sided die. We roll the dice, concatenating the values in order to produce a number between 00 and 99. We return the $\bmod 20$ of this number.

There exist alternative encodings, as well. For example, consider $m=8$ and $n=4$. Here, we may use the first dice roll to determine whether our answer should be "high" or "low", and the second roll to select a value from the sets $\{0,1,2,3\}$ or $\{4,5,6,7\}$. We leave the generalization of this case, and others, as exercises for the reader.

6 Conclusion

We have shown a procedure for simulating any discreet, uniform distribution d_{m} using a fixed number of samples from another discreet, uniform d_{n} distribution. One real world example is emulating the popular 20-sided die found in Dungeons and Dragons using only a six-sided die.

We also have shown a cost analysis for such a procedure, as well as pointed out two special cases where perfect emulation is achieved.

7 Acknowledgements

Special thanks to Michael Lee, Karl Pichota and Jeff Picton for the many helpful discussions regarding this problem.

References

[1] Wikipedia. d20 system - Wikipedia, the free encyclopedia, 2011. [Online; accessed 03-March-2011].
[2] Wikipedia. Geometric distribution - Wikipedia, the free encyclopedia, 2011. [Online; accessed 06-March-2011].

